
1

Peer-to-Peer Protocols

• the interaction of two processes through the exchange of messages (PDUs)

– to provide a service to a higher level

» e.g. confirmation of receipt, sequence order guarantees, maximum delay etc.

n+1
entity

n-SAP

n+1
entity

n-SAP

n entity n entity

n-SDU

n-SDU

n-SDU

H

H n-SDU
n-PDU

2

• either across a single hop in the network or across an entire network

– affects whether PDUs arrive in order, how long they take to arrive etc.

– corresponding protocols have to take these characteristics into account

• across a single hop at the Data Link layer:

Medium
3 2 11 2

2
1

A B

3 2 11 2

2
1

Physical
Layer

Data link
Layer

Physical
Layer

Data link
LayerA B

Packets Packets

Frames

1 1

2 2

3

• end-to-end across an entire network:

Physical
Layer

Data link
Layer

Physical
Layer

Data link
Layer

End system
α

Network
Layer

Network
Layer

Physical
Layer

Data link
Layer

Network
Layer

Physical
Layer

Data link
Layer

Network
Layer

Transport
Layer

Transport
Layer

Messages Messages

Segments

End system
β

3
2

1

3 2 11 2
2 1

2
1

Medium

A B

3 2 11 2
2

1

C

2
1

2
1

2 134 1 2 3 4

End System
α

End System
β

1 2 2 1

4

• Service models
– quality of service

» required levels of performance
» probability of errors, probability of incorrect delivery, transfer delay etc.

– end-to-end requirements
» arbitrary message size, reliability and sequencing, pacing and flow control,
timing, addressing, privacy and authentication
» may be provided by adaptation functions between applications and network

» cannot all be provided by interposed functions
- underlying network may not be able to provide level of service required

Application Network Application

Adaptation
Function

Adaptation
Function

Network service

5

– many adaptation functions can be introduced either on a hop-by-hop basis or
end-to-end across an entire network

» e.g. error control with acknowledgement of packets and possible retransmission:

– trade-off :
» hop-by-hop initiates error recovery more quickly – good for unreliable links

- but processing in each node more complex
- may be slower depending on the ACK/NAK protocol used

» where errors are infrequent, end-to-end mechanism is preferred

– hop-by-hop versus end-to-end choice also relevant to flow control & congestion

1 2 3 4 5Data Data Data

ACK/NAK

Data

1 2 3 4 5
Data Data Data Data

ACK/
NAK

ACK/
NAK

ACK/
NAK

ACK/
NAK

End-to-end

Hop-by-hop

6

• ARQ (Automatic Repeat Request) Protocols
– used in protocol layers where reliable delivery of a data stream is required in
the presence of errors

– assumes a steady stream of blocks to be transmitted

– blocks required to contain a header with control information and a trailer with
CRC information (covering the header and the data) to allow error detection

» assume trailer allows error detection with high degree of probability

– can be used over a single hop or end-to-end
» for end-to-end use, frames assumed to arrive in order and just once

- if they arrive at all

» where a connection is set up which all frames follow, such as ATM networks

– information frames (I-frames) transfer user packets

– control frames are short blocks that just consist of a header and a CRC
» include ACKs which acknowledge correct receipt of a frame
» and enquiry frames, ENQs, which require the receiver to report its status

– time-outs are required to prompt certain actions to maintain the flow

7

– basic elements of ARQ:

– assume initially that information flow is unidirectional
» reverse channel only used of transmission of control information

Packet
sequence

Error-free
packet

sequence

Information
frames

Control
frames

Transmitter Receiver

CRC

Information
packet

Header

Station A Station B

Information Frame

Control frame

CRC Header

8

• Stop-and-Wait ARQ
– transmitter and receiver deal with one frame at a time

» transmitter waits to receive an acknowledgment from receiver that it has
received the frame correctly before it transmits the next frame

– each time A transmits a frame it also starts a timer
» set to expire at some chosen point in the future
» depending on speed of channel, length of frame, time for B to respond etc.

– example of a frame lost in transmission from A:

A

B

frame
0

frame
1

ACK

frame
1

ACK

time
Time-out

frame
2

A

B

frame
0

frame
1

ACK

frame
2

ACK

time
frame

3
ACK

9

– station A transmits frame 0 (and starts its timer), then waits for an ACK frame
from station B

– frame 0 is received without error, so station B transmits an ACK frame back

– the ACK from B is also received without error, so A knows frame 0 has been
received by B correctly

– A now proceeds to transmit frame 1 (and restarts its timer)

– when frame 1 has errors in transmission
» B may receive the frame and detect an error from the CRC
» B maybe did not receive any frame at all
» in either case, B takes no action i.e. does not return an ACK

- NAKs not used in this protocol

– A’s time-out expires, so it retransmits frame 1

– A continues this sequence of waiting for its time-out to expire and
retransmission

» until B acknowledges frame 1 successfully
» then A moves on to transmit frame 2

10

– suppose the ACK of frame 1 is lost on the way back to A :

– after receiving frame 1, B delivers its contents to the higher-level user of it

– A does not receive the ACK, so its time-out expires
» A cannot tell the difference of this from the first case

– A retransmits frame 1

– B accepts the retransmitted frame 1 as a new frame
» and delivers it to its user again
» i.e. the user receives a duplicate packet

– this ambiguity is eliminated by including a sequence number in the I-frame
header

» B can then recognise that the packet was a retransmission, discard it, and
send the ACK again back to A

A

B

frame
0

frame
1

ACK

frame
1

ACK

time
Time-out

frame
2

ACK

11

– another type of ambiguity can arise if the time-out has been inadvertently set too
short :

– frame 0 is received correctly and the ACK returned

– in the meantime, the time-out expired too soon and A has retransmitted frame 0

– A assumes that the ACK it now receives is for the retransmitted frame 0
» so then transmits the next frame, frame number 1

– B meantime transmits an ACK back to A for the retransmitted frame 0

– A assumes the next ACK (really for the retransmitted frame 0) is for frame 1
» and transmits frame 2 to B

– if frame 1 does not reach B, it will not transmit an ACK back to A for it
» but overall frames received match ACKs sent

– upshot is that frame 1 is lost forever

A

B

frame
0 frame

0ACK
frame

1
ACK

time
time-out

frame
2

12

– this ambiguity can be resolved by providing a sequence number in the
acknowledgment

» transmitter then knows which frame has been received

– transmitter keeps track of the sequence number Slast of the frame being sent
» plus the frame itself, in case it needs to be retransmitted

– receiver keeps track only of the sequence number of the next frame it is
expecting to receive, Rnext

– sequence number must not get too large
» limited space in the I-frame header and the ACK packet

– a 1-bit sequence number adequate in this case

– the combination of Slast and Rnext forms the state of the transmission link
» Slast will be 0 or 1; Rnext will be 0 or 1
» therefore four states : (0,0), (0,1), (1,0), (1,1)
» depending on which frame has been transmitted and which ACKs received

13

Transmitter Receiver

Slast
Rnext

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

(0,0) (0,1)

(1,0) (1,1)

Timer

Global State:
(Slast, Rnext)

Error-free frame 0
arrives at receiver

ACK for
frame 0
arrives at
transmitter

ACK for
frame 1
arrives at
transmitter Error-free frame 1

arrives at receiver

Station A Station BRnext

Slast

14

– assume A ann B are synchronised and start in state (0,0)

– station A transmits frame 0 with Slast = 0

– system state does not change until B receives an error-free frame 0
» i.e. A continues to retransmit according to its time-out mechanism

– eventually B receives frame 0, changes Rnext to 1 and sends an ACK to A
with Rnext set to 1

» implicitly acknowledging receipt of frame 0

– state is now (0,1)

– any subsequent frames with sequence number 0 are recognised as
duplicates and discarded by B

» and an acknowledgment resent to A with Rnext = 1

– eventually A receives an acknowledgment with Rnext = 1
» and starts to transmit frame 1 using Slast = 1

– A and B are now synchronised again and system is in state (1,1)

– A and B now work together to deal with frame 1
» and an orderly delivery of the sequence of frames is ensured

15

– error recovery can be expedited by use of an ENQ control frame
» which requires the receiver to retransmit its previous message

– it may be more efficient to enquire of the receiver whether it actually received
a frame correctly instead of always retransmitting the frame

» e.g. if the ACK went missing
» and the frame is very long

– example: a frame is lost en route

» station A sends an ENQ instead of retransmitting frame 1
» if B returns its last message i.e. an ACK with Rnext = 1
» A knows that frame 1 was not received correctly

- and can retransmit it

A

B

frame
0

frame
1ACK

1

ENQ
ACK

1

time

Time-out

frame
1

16

– if it was the ACK with Rnext = 0 that got lost, A knows that frame 1 was
correctly received by B

» it can proceed with transmitting the next frame
» and avoid wasting time retransmitting frame 1 :

– in general in ARQ protocols, the value of Rnext implies that all the previous
frames have been correctly received

A

B

frame
0

frame
1ACK

1

ENQ
ACK

0

time
Time-out

frame
0ACK

0

17

– Stop-and-Wait can become very inefficient
» when propagation delay is significant in comparison with transmission time

– example: a 1.5Mbps channel, 1000bit packets, for 100km :
» propagation delay : c = 3x108m/s means 3.3ns/m; hence 0.33ms per 100km
» packet transmission time : 1000/1.5x106 secs = 0.67ms
» time between transmission of successive packets =

prop delay A to B + packet trans time + prop delay of ACK B to A + overhead
= 0.33ms + 0.67ms + 0.33ms + ? = 1.33ms

» could transmit 2000 bits in this time : 50% efficient

– example: a 2.5Gbps channel, 10000bit packets, for 1000km
» prop delay : 3.3ms
» packet transmission time : 10000/2.5x109 = 4µs
» time between packets =

3.3ms + 4µs + 3.3ms = 6.6ms = 6.6x10-3secs

» could transmit 2.5x109x6.6x10-3bits = 1.65x107bits : 0.06% efficient

– this delay-bandwidth product is a measure of lost opportunity to transmit bits

18

– Stop-and-Wait protocol was used by IBM for their Bisync protocol
» Binary Synchronous Communications
» used for transmitting blocks of character-oriented data from remote terminals
to mainframes

- e.g. from card-readers, Remote Job Entry terminals, ATM machines etc.
- 2400bps usual

» parity coded character codes + final checksum
» replaced eventually by SNA (Systems Network Architecture)
» but not dead yet!

- Serengeti Systems Inc still make terminals using Bisync

– Xmodem :
» a popular file transfer protocol using Bisync
» 128bit – 1024-bit packets at 4096bps
» error detection by checksum or CRC
» Ymodem and Zmodem higher speed versions

19

• Go-Back-N ARQ
– inefficiency of Stop-and-Wait ARQ can be improved by allowing the
transmitter to continue sending frames while waiting for acknowledgments

– forms the basis of the HDLC protocol at the OSI Data Link level

– suppose frames are numbered 0, 1, 2, 3, …

– transmitter has a limit on the number of frames that can be outstanding
without acknowledgment : Ws

» Ws is chosen to allow the channel to be fully utilised

– consider the transfer of frame 0 :
» after frame 0 is sent, Ws-1 additional frames are sent
» hoping that frame 0 will be correctly received and not need retransmission
» all being well the ACK for frame 0 will arrive back

- while it is already dealing with later frames

» continues transmitting ahead as long as ACKs arrive as expected

– a pipelined system

20

– what happens when an error occurs?

» if frame 3 has errors in transmission,
» receiver ignores frame 3 and all subsequent frames
» transmitter eventually reaches its maximum number of outstanding frames
» and forced to go back N frames, where N = Ws

» and begin retransmitting all packets from frame 3 onwards again

A

B

fr
0

timefr
1

fr
2

fr
3

fr
4

fr
5

fr
6

fr
3

A
C
K
1 error

Out-of-sequence frames

Go-Back-4: 4 frames are outstanding; so go back 4

fr
5

fr
6

fr
4

fr
7

fr
8

fr
9

A
C
K
2

A
C
K
3

A
C
K
4

A
C
K
5

A
C
K
6

A
C
K
7

A
C
K
8

A
C
K
9

21

– correspondence between Go-Back-N and Stop-and-Wait protocols :

» loss of transmission time equal to the time-out for Stop-and-Wait
» loss of time corresponding to Ws frames for Go-Back-N

A

B

fr
0 time

fr
1

fr
2

fr
3

fr
0

error

Out-of-sequence frames

4 frames are outstanding; so go back 4
fr
2

fr
3

fr
1

fr
4

fr
5

fr
6

A

B

timefr
0

fr
0

error

Time-out expires

fr
1

A
C
K
1

Stop-and-Wait

Go-Back-N

A
C
K
1

A
C
K
2

A
C
K
3

A
C
K
4

A
C
K
5

A
C
K
6

22

– Go-Back-N protocol depends on ensuring that the oldest frame is eventually
delivered correctly

» since the protocol triggers the retransmission of this frame and the subsequent
Ws-1 frames each time the send window is exhausted
» protocol will operate correctly as long as any frame can eventually get through

– this protocol works as long as the transmitter has an unlimited supply of
packets that need to be transmitted

– where there are fewer than Ws-1 subsequent packets to send
» retransmissions are not triggered, since the window is not exhausted

– need to associate a timer with every packet
» that can expire to trigger retransmissions

– Rnext is now the sequence number of the specific frame receiver is looking for

– Slast is the oldest unacknowledged frame at the transmitter

– let Srecent be the number of the most recently transmitted frame

23

– the transmitter maintains a list of the frames it is processing
» and must buffer all frames sent but not yet acknowledged

» transmitter has a send window of sequence numbers : Slast to Slast + Ws –1
- if Srecent reaches upper limit, transmitter must wait for a new acknowledgment

» receiver maintains a receive window of size 1 for the next frame Rnext it expects

Timer Slast

Slast+1

Srecent

Slast+Ws-1

Timer

Timer

Transmitter Receiver

...

Receive Window

Buffers

Slast Slast+Ws-1

...
Send Window

Srecent

Frames
transmitted
and ACKed

Rnext
frames

received

The receiver will only accept
a frame that is error-free and
that has sequence number Rnext

...

24

– Go-Back-N is a sliding window protocol
» if an arriving frame passes the CRC check and has the correct sequence
number, Rnext, it is accepted and Rnext is incremented

- the receive window slides forward

» the receiver sends an acknowledgment containing the incremented Rnext

- which implicitly acknowledges receipt of all frames prior to Rnext

- assuming a wire-like channel in which packets cannot get re-ordered

» when the transmitter receives an ACK with a value Rnext, it can assume that
all prior frames have been received correctly

- even if it has not received ACKs for all those frames
- because either they got lost or the receiver chose not to transmit them

» upon receiving an ACK with value Rnext, transmitter updates its value of Slast
to Rnext and slides the window forward

– Sequence numbers versus Window size, Ws

» for m bits of sequence number in the frame, 2m possible sequence numbers
» therefore must be counted modulo 2m

– receiver must be able to determine unambiguously which frame has been
received taking into account the wrapping around when count reaches 2m

25

– consider m = 2 i.e. 4 sequence numbers, and Ws = N = 4 :

» transmitter initially sends 4 frames one after the other
» receiver sends 4 corresponding acknowledgments

- but all of them get lost

» when transmitter reaches its window size, 4, it goes back 4
- and begins retransmitting frame 0

» when the retransmitted frame 0 reaches the receiver, the receiver has
Rnext=0, so it accepts this as the next valid frame i.e. frame number 5

- it does not know from the frame number whether this is the next frame or a
retransmitted frame

A

B

fr
0

timefr
1

fr
2

fr
3

fr
0

fr
1

fr
2

fr
3

A
C
K
1

M =22 = 4, Go-Back - 4:

A
C
K
4

A
C
K
2

A
C
K
3

Transmitter goes back 4

Receiver has Rnext=0, but it does not know whether its
ACK for frame 0 was received, so it does not know
whether this is the old frame 0 or a new frame 0

26

– consider m = 2 and Ws = N = 3 :

» now when frame 0 is retransmitted, receiver is looking for Rnext=3
- so knows this frame is an old one

– in general, for m bits of sequence number, with Ws ≤ 2m-1
» assume current send window is 0 to Ws-1
» suppose frame 0 is received, an acknowledgment sent back but lost
» subsequent frames may also be received and the acknowledgments lost

- but receiver’s Rnext is still incremented so Rnext is somewhere in the range 1 to Ws

» when transmitter resends frame 0, receiver will not be looking for frame 0
- and knows it is an old frame

A

B

fr
0

timefr
1

fr
2

fr
0

fr
1

fr
2

A
C
K
1

M=22=4, Go-Back-3:

A
C
K
2

A
C
K
3

Transmitter goes back 3

Receiver has Rnext=3 , so it rejects the old frame 0

27

– performance of Go-Back-N ARQ can be improved by sending a NAK
immediately after the first out-of-sequence frame is received :

» the NAK with sequence number Rnext acknowledges all frames up to Rnext-1
- and informs the transmitter that an error has been detected in frame Rnext

» the receiver now discards all subsequent frames sent
- and instructs the transmitter to go back and retransmit frame Rnext and all
subsequent frames

– in general, the NAK system results in having the transmitter go back less
than N frames

A

B

fr
0

timefr
1

fr
2

fr
3

fr
4

fr
5

fr
1

fr
2

A
C
K
1

error

Out-of-sequence
frames

Go-Back-7:

fr
4

fr
5

fr
3

fr
6

fr
7

fr
0

N
A
K
1

A
C
K
3

A
C
K
4

A
C
K
5

A
C
K
6

A
C
K
7

A
C
K
2

Transmitter goes back to frame 1

28

– Bidirectional flow : transmitter and receiver functions of the protocol are
implemented at both ends

» acknowledgement frames can be piggybacked into headers of I-frames

Transmitter Receiver

TransmitterReceiver

ACKs are piggybacked in headers

Station A Station B

RA
next

“A” Receive Window

RB
next

“B” Receive Window

SA
last

SA
last

SA
last+1

SA
recent

SA
last+WA

s-1Timer

SA
last+WA

s-1

...

...

Buffers

“A” Send Window

...

SB
last

SB
last

SB
last+1

SB
recent

SB
last+WB

s-1

SB
last+WB

s-1

...

...

Buffers

“B” Send Window

...

SA
recent RA

next

SB
recent RB

next

Timer

Timer

Timer

Timer

Timer

Timer

Timer

29

– piggybacking results in significant improvement in use of bandwidth
» separate acknowledge frames can often be avoided

– if no frames are yet ready to be transmitted to piggyback into, receiver can
set an ACK timer

» that defines the maximum time it will wait for a suitable I-frame
» if it expires, a separate control frame can be sent with the acknowledgment

– a receiver handles out-of sequence packets slightly differently
» a frame that arrives in error is ignored
» subsequent frames that are out of sequence but error free are only discarded
after the ACK sequence number i.e. Rnext, has been extracted

- this allows the local Slast to be updated for what it previously transmitted

30

– the time-out value needs to be chosen so that it exceeds the normal time for
a frame acknowledgment to be received

» this includes 2 propagation delays, one in each direction
» plus 2 transmission times for the frames used for piggybacking

- the first one might just have been sent too soon to insert an ACK and so missed

» plus some overhead

– long piggybacked I-frames can delay receipt of the ACK at the transmitter
» and might exceed the normal time-out, thus triggering extra retransmissions
» if the return I-frame is known to be long, a dedicated control frame can be
inserted before it to avoid this

Tf Tf

Tproc

TpropTprop

Tout

31

• Selective Repeat ARQ
– in channels with high error rates, Go-Back-N ARQ is inefficient

» because of the need to retransmit not only the frame in error but also all the
subsequent frames

– Selective Repeat modifies Go-Back-N ARQ :
» by allowing frames that are out-of-sequence but error free to be accepted by
the receiver
» and by only retransmitting the individual frames in error

– extra buffering is required at the receiver to hold the out-of-sequence frames
» until the missing frames are received
» and the sequence of frames delivered in the correct order

– the receive buffer now spans the range Rnext to Rnext + Wr –1
» where Wr is the maximum number of frames the receiver is prepared to
accept at once

– basic objective remains to advance the values of Rnext and Slast by delivery of
the oldest outstanding frame

32

– ACK frames carry Rnext, the oldest frame not yet received
» the receive window is advanced with error-free receipt of a frame with
sequence number Rnext

Transmitter Receiver

Buffers

Slast Slast+Ws-1

...Send Window

Srecent

Frames
transmitted
and ACKed

Timer Slast

Slast+1

Srecent

Slast+Ws-1

Timer

Timer

...

...

Receive Window

Rnext

Frames
received Rnext +Wr-1

Rnext+1

Rnext+2

Rnext+Wr-1

...

Buffers

33

– unlike Go-Back-N, the receive window may now advance by several frames
at once :

» occurs when one or more of the frames that immediately follow Rnext have
already been received correctly
» and are buffered in the receiver

– all these frames can now be delivered in order to the final destination user

– Retransmission mechanism :

– when a timer expires, only the corresponding frame is retransmitted

– whenever an out-of-sequence frame is received, a NAK is sent back with
sequence number Rnext

» when the transmitter receives such a NAK, it retransmits that specific frame
» piggybacking used for bidirectional channels, as before
» the ACK frames for subsequent frames continue to hold Rnext

» only when the frame in error is finally received is the sequence number
returned updated
» NAKs are then returned each later frame received in error, one by one

- each one being a request for that specific frame to be retransmitted

34

– example:

» NAK 2 returned when frame 3 arrives out of sequence
» receiver continues to reply with ACK 2s for subsequent frames

- indicating that it is still waiting for a correct transmission of frame 2

» until the retransmitted frame 2 is successfully received
» then the receive window is moved up to Rnext = 7, to take account of it having
already successfully received frames 3, 4, 5 and 6

- even if the ACKs for the intervening frames did not get back to the transmitter
- ACK 7 implies that all the previous frames have now been received correctly

fr
0

timefr
1

fr
2

fr
3

fr
4

fr
5

fr
6

fr
2

A
C
K
1 error

fr
8

fr
9

fr
7

fr
10

fr
11

fr
12

A
C
K
2

N
A
K
2

A
C
K
7

A
C
K
8

A
C
K
9

A
C
K
1
0

A
C
K
1
1

A
C
K
1
2

A
C
K
2

A
C
K
2

A
C
K
2

35

– Maximum send window size for m-bit sequence numbers

– example: m = 2, send and receive window size = 3 :

» initially A transmits frames 0, 1, 2
» all three arrive correctly but all the ACKs are lost

- Rnext is incremented to 3 and window advanced
» receiver’s window is now ready to accept frames 3, 0, 1

- receiver does not know that A did not get the ACKs
- receiver assumes that frames 3, 4{0}, 5{1} will be transmitted next

» when A’s timer for frame 0 expires, it retransmits frame 0
» upon receiving this frame 0, B now cannot tell whether it is the old
retransmitted frame 0 or a new frame with sequence number 0

- possible since frame 3 may have gone missing in transit

A

B

fr
0

timefr
1

fr
2

fr
0

A
C
K
1

A
C
K
2

A
C
K
3

Receive Window {3,0,1}

Frame 0 resent

36

– window size = 2m-1 too large

– example: m = 2, send and receive window size = 2 :

» A transmits frames 0, 1
» both received correctly but both ACKs get lost again

- Rnext incremented to 2

» receiver now ready to accept frames 2, 3
» when A’s timer for frame 0 expires, it retransmits frame 0
» when B receives this frame 0, it knows that it is a retransmitted old frame 0

- since a new frame 0 cannot be transmitted by A until an ACK 2 has been sent
- B discards this old frame 0 since it has already received it correctly

A

B

fr
0

timefr
1

fr
0

A
C
K
1

A
C
K
2 Receive Window {2,3}

Frame 0 resent

frame 0 rejected

37

– in general, suppose window size is Ws = Wr = 2m-1

» i.e. half the sequence number space

– suppose initial send and receive windows are both 0 to Ws-1
» suppose frame 0 is received correctly but the ACK for it is lost
» transmitter can transmit subsequent frames up to frame Ws-1
» depending on which frames are received correctly, Rnext can be anywhere in the
range 1 to Ws

- Rnext = Ws if all the frames transmitted are received correctly

» the end of the receive window, Rnext + Wr –1, can be anywhere in the range
from Ws to 2Ws-1

- = 2Ws-1 if all the frames have been received correctly and Rnext = Ws

» the receiver will not receive frame 2Ws until the transmitter has received an
acknowledgment for frame 0
» any receipt of frame 0 prior to frame 2Ws indicates a retransmission of frame 0

- I.e. frames cannot get more than 2Ws ahead

» therefore, 2Ws = 2m indicates the maximum window size before wrap-around
» i.e. Ws = 2m-1

38

• Examples of Selective Repeat ARQ:
– Transmission Control Protocol (TCP)

» slightly more elaborate to deal with a stream of bytes
» which the higher level protocol may not immediately send or consume

- i.e. send and receive windows bigger and need more control pointers

» also has to deal with packets arriving out of order

– Service Specific Connection Oriented Protocol (SSCOP)
» originally invented for high-speed satellite links
» now used in ATM networks
» both have a large delay-bandwidth product which require an efficient
transmission protocol

39

• Transmission Efficiency of ARQ protocols
– example: 1024 byte frames, 1.5Mbps channel, 5ms delay (Leon-Garcia)

– random bit errors with probability p, efficiency η :

» efficiency of Stop-and-Wait always less than 35%
» Go-Back-N has efficiencies comparable to Selective Repeat for p less than 10-
6

- but deteriorates to the performance of Stop-and-Wait when p reaches 5 x 10-5

» Selective Repeat also deteriorates as p becomes larger than 10-4

- at this rate, probability of frame error is 1-(1-10-4)8192 ≈ 0.56

0

0.2

0.4

0.6

0.8

1
1.

E
-0

1

5.
E

-0
2

1.
E

-0
2

5.
E

-0
3

1.
E

-0
3

5.
E

-0
4

1.
E

-0
4

5.
E

-0
5

1.
E

-0
5

5.
E

-0
6

1.
E

-0
6

5.
E

-0
7

1.
E

-0
7

Selective Repeat
Go-Back-N

Stop & Wait

p

η

40

– optimum frame length
» as frame size increases, impact of delay-bandwidth product is reduced
» increasing frame size also increases probability of frame transmission error

– example: p = 10-4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

32 64 128 256 512 1024 1536 2048

nf

η
Selective Repeat

Go-Back-N

Stop &Wait

	Peer-to-Peer Protocols

