Digital Transmission Fundamentals

- Pulse Code Modulation (PCM)
 - sampling an analogue signal
 - quantisation : assigning a discrete value to each sample
 - » by rounding or truncating
 - » results in quantisation noise error
 - *encoding* : representing the sampled values with *n*-bit digital values
 - » higher n gives lower quantisation noise and vice versa
 - » linear encoding
 - *companding* : logarithmic encoding : larger values compressed before encoding
 & expanded at receiver
 - » *differential* PCM : encoding difference between successive values
 - » *adaptive DPCM* : encodes difference from a prediction of next value
 - » delta modulation : 1-bit version of differential PCM : a 1-bit staircase function

- for telephone-quality voice
 - 8000 samples per second = every 125 microsecs
 - -8 bits resolution = 64 kbps

- Compression of data
 - compression ratio : ratio of number of original bits to compressed bits
 - lossless compression : original data can be recovered exactly
 - » e.g. file compression, GIF image compression
 - » e.g. run-length encoding
 - » limited compression ratios achievable
 - lossy compression : only an approximation can be recovered
 - » e.g. JPEG image compression : can achieve 15:1 ratio still with high quality
 - » e.g. MPEG-2 for video : uses temporal coherence; MP3 for audio etc.
 - » statistical encoding : most frequent data sequences given shortest codes
 - e.g. Morse code, Huffman coding
 - » transform encoding
 - e.g. signals transformed from spatial or temporal domain to frequency domain
 - e.g. Discrete Cosine Transform of JPEG and MPEG
 - » vector quantisation : sequences looked up in a code-book

» *fractal* compression : small parts of an image compared with other parts of same image, *translated, shrunk, slanted, rotated, mirrored* etc.

Information type	Compression technique	Format	Uncompressed Compre		Applications
Voice	РСМ	4 kHz voice	64 kbps	64 kbps	Digital telephony
Voice	ADPCM (+ silence detection)	4 kHz voice	64 kbps	32 kbps	Digital telephony, voice mail
Voice	Residual- excited linear prediction	4 kHz voice	64 kbps	8-16 kbps	Digital cellular telephony
Audio	MP3	16-24 kHz audio	512-748 kbps	32-384 kbps	MPEG audio
Video	H.261	176x144 or 352x288 @ 10-30 fps	2-36.5 Mbps	64 kbps- 1.544 Mbps	Video conferencing
Video	MPEG-2	720x480 @ 30 fps	249 Mbps	2-6 Mbps	Full-motion broadcast video
Video	MPEG-2	1920x1080 @ 30 fps	1.6 Gbps	19-38 Mbps	High-definition television

• Network requirements

- volume of information and transfer rate

- other possible requirements:
- accuracy of transmission and tolerance to inaccuracy
 - » data files cannot tolerate any inaccuracy
 - » an audio or video stream can tolerate glitches
 - » e.g. video conferencing : missing frames can be predicted if missing
- the higher the compression ratio, the less tolerant to transmission errors
 - » e.g. residual-excited linear predictive coding quite vulnerable to errors
 - » error detection and correction codes necessary
 - » like optimising traffic flows on roads : vulnerable to accident glitches
- maximum delay requirements
 - » a packet has propagation delay as well as block transmission time
 - » smaller packets may be necessary to limit delay (latency)
 - » e.g. 250ms for normal person-to-person conversation

- maximum *jitter* requirements
 - » the variation in delivery time of successive blocks
 - » sufficient buffering required to cope with maximum expected jitter
 - » e.g. RealPlayer video stream buffering

- Transmission rates
 - how fast can bits be transmitted reliably over a given medium?
 - factors include:
 - » amount of energy put into transmitting the signal
 - » the distance the signal has to traverse
 - » the amount of noise introduced
 - » the bandwidth of the transmission medium
 - a transmission channel characterised by its effect on various frequencies
 - » the *amplitude-response function*, A(f), defined as ratio of amplitude of the output signal to that of the input signal, at a given frequency f
 - » a typical low-pass channel and an idealised channel of bandwidth W:

- an idealised impulse passed through a channel of bandwidth W comes out as:

 $s(t) = \sin(2\pi W t)/2\pi W t$

- where T = 1/2W

- most of the energy is confined to the interval between -T and T
- suggests that pulses can be sent closer together the higher the bandwidth
 - » output resulting from a stream of pulses (symbols) is additive
 - » will therefore suffer from *intersymbol interference*
- zero-crossings at multiples of T mean zero intersymbol interference at times t=kT

- Nyquist Signalling Rate
 - defined by : $r_{max} = 2W$ pulses/second

- the maximum signalling rate that is achievable through an *ideal* low-pass channel with *no* intersymbol interference

- » ideal low-pass filters difficult to achieve in practice
- » other types of pulse also have zero intersymbol interference
- with two pulse amplitude levels
 - » transmission rate = 2W bits per second
- multilevel transmission possible
 - » if signal can take 2^m amplitude levels
 - » transmission rate = 2Wm bits per second
- in the absence of noise, bit rate can be increased without limit
 - » by increasing the number of amplitude levels
- unfortunately, noise is always present in a channel

» amount of noise limits the reliability with which the receiver can correctly determine the information that was transmitted

• Signal-to-Noise Ratio

- defined as:

SNR = Average Signal Power Average Noise Power

 $SNR (db) = 10 \log_{10} SNR$

• Shannon Channel Capacity:

 $C = W \log_2(1 + SNR)$ bits/second

- reliable communication only possible up to this rate
- e.g. ordinary telephone line V.90 56kbps modem
 - » useful bandwidth of telephone line $\approx 3400 \text{ Hz}$
 - purely because of added filters!
 - » assume SNR = 40 db (somewhat optimistic)
 - » C = 44.8 kbps !
 - » in practice, only 33.6 kbps possible inbound into network
 - quantisation noise decreases SNR because of A-D conversion from telephone line into the network
 - » outbound from ISP, signals are already digital
 - no extra quantisation noise through the D-A from the network onto the telephone line
 - » a higher SNR therefore possible
 - speeds approaching 56 kbps can be achieved

• Line Coding:

	1	0	1	0	1	1	1	0	0	
Unipolar						1				
NRZ						1				
	- 					 				
Polar NR7				1	1	- 				,
	1					 	1		I I	
NR7-Inverted						, 				
(Differential –										
Encoding)	, 					1		1		
						I I	, 1 1	, 1 1		I I
Bipolar										
Encoding	 	1						1		
	 						, , , ,	, , , ,		
Manchester					1			1		
Elicounig	1									1
Differential	1			1 	1 	- 	: 	: 		:
Manchester	I I I				I I		I 			
Encoding	1				1	1	1			

- considerations:

» average power, spectrum produced, timing recovery etc.

• Modulation:

- other types:
 - » Quadrature Amplitude Modulation (QAM)
 - » Trellis modulation, Gaussian Minimum Shift Keying, etc. etc.

- Properties of media: Copper wire pairs
 - » twisting reduces susceptibility to crosstalk and interference
 - shielded (STP) or unshielded (UTP)
 - » can pass a relatively large range of frequencies:

- » still constitutes overwhelming proportion of access network wiring
- » Category 5 cable specified for transmission up to 100MHz
 - possibly even up to 1GHz in Gigabit Ethernet
- » 4kHz bandwidth on telephone lines due to inserted filters
 - *loading coils* added to provide flatter response and better fidelity

- » much better immunity to interference and crosstalk than twisted wire pair
- » and much higher bandwidths:

- » used in original Ethernet at 10Mbps
- » 8MHz to 565MHz in telephone networks
 - but superseded by optical fibre
- » used in cable TV distribution
 - tree-structured distribution networks with branches at road ends

• Optical fibre

» relies on total internal reflection of light waves:

» core and cladding have different refractive indices: $n_{core} > n_{cladding}$

- » first developed by Corning Glass in 1970
 - demands extremely pure glass now approaching theoretical limits
 - originally 20 db per km, now 0.25 db per km
 - signals can be transmitted more than 100 km without amplification

– manufacture:

» preform created by Outside Vapour Deposition (OVD) of ultrapure silica

- » then consolidated in a furnace to remove water vapour
- » then drawn through a furnace into fine fibres

» multimode fibre - multiple rays follow different paths:

» single-mode fibre - all rays follow a single path:

» larger core of multimode fibre allows use of lower-cost LED and VCSEL optical transmitters

» single-mode fibre designed to maintain spatial and spectral integrity of optical signals over longer distances

- and have much higher transmission capacity

- maximum capacity at zero-dispersion wavelength
 - » typically in region of 1320nm for single-modes fibres
 - » but can be tailored to anywhere between 1310nm and 1650nm
- optical fibre splicing difficult
 - » demands tight control of fibre during manufacture
 - cladding diameter

- widely deployed in backbone networks
 - » but still too expensive for the last mile to individual consumers

Wavelength (meters)

- » attenuation varies logarithmically with distance
 - varies with frequency and with rainfall
- » subject to interference and multipath fading
 - interference the main reason for tight regulatory controls on radiated power
- » VLF, LF and MF band radio waves follow surface of earth
 - VLF at anything up to 1000km; LF and AM less
- » HF bands reflected by ionosphere (Appleton Layer etc.)
- » VHF and above only detectable within line-of-sight
- » applications: Bluetooth, 802.11, Satellite etc.

- Error Detection and Correction (CS3 Comms)
 - automatic retransmission request (ARQ) versus forward error correction (FEC)
 - detection:
 - » parity checks, 1-dimensional and 2-dimensional in rows and columns
 - » checksums on blocks of words
 - extra word added to block to make sum = 0
 - e.g. IP protocol blocks uses 1's complement arithmetic
 - » polynomial codes
 - checkbits in the form of a cyclic redundancy check
 - standard generator polynomials

x CRC-8 : $x^{8}+x^{2}+x+1$: used in ATM header error control

a CCITT-16 : $x^{16}+x^{12}+x^{5}+1$: HDLC, etc.

- correction
 - » Hamming codes, Reed-Solomon codes, Convolutional codes etc.
- all require redundancy

» i.e. extra information must also be transmitted

• Multiplexing:

- sharing expensive resources between several information flows

- Frequency-division multiplexing:
 - used when the bandwidth of the transmission line is greater than that required by a single information flow

 multiplexer modulates signals into appropriate frequency slot and transmits the combined signal:

– e.g. telephone groups (12 voice channels), supergroups (5 groups = 60 voice channels) and mastergroups (10 supergroups = 600 voice channels)

- e.g. broadcast radio and television - each station assigned a frequency band

- Time-division multiplexing:
 - transmission line organised into equal-sized time-slots
 - an individual signal assigned to time-slots at successive fixed intervals

- e.g. a T-1 carrier time-division multiplexes 24 channels onto a 1.544Mbps line

- tricky problems can arise with the synchronisation of input streams
- -e.g. two streams of data both nominally at 1 bit every T secs
- what happens if one stream is *slow*?
- eventually the slow stream will miss a slot bit-slip :

- dealt with by running multiplexer slightly faster than combined speed of inputs
- signal bits to indicate that a bit-slip has occurred

- Code-division multiplexing:
 - primarily a *spread-spectrum* radio transmission system
 - » 3G mobile phones, GPS, etc. but also in cable transmission systems
 - transmissions from different stations simultaneously use same frequency band
 - individual transmissions separated by individual codes for each transmitter
 - » a long pseudorandom sequence that repeats after a very long period
 - » receivers need the specific code to recover the desired signal

- each bit from a signal is transformed into G bits by multiplying the signal bits by the successive G code bits (using -1 in place of 0 and +1 in place of 1)

- » and transmitting the result
- original data recovered by multiplying transmitted signal by code sequence

– G is the spreading factor

» chosen so that transmitted signal occupies the entire frequency band

- example of 3 channels transmitting simultaneously:

» channel 1 code : (-1, -1, -1, -1) : transmitting $(1, 1, 0) \equiv (+1, +1, -1)$

» channel 2 code : (-1, +1, -1, +1) : transmitting $(0, 1, 0) \equiv (-1, +1, -1)$

» channel 3 code : (-1, -1, +1, +1) : transmitting $(0, 0, 1) \equiv (-1, -1, +1)$

- example: decoding channel 2:
 - » received signal remultiplied by code sequence (-1, +1, -1, +1)
 - » result integrated over each time-slot:

» to regenerate original $(-1, +1, -1) \equiv (0, 1, 0)$

- good rejection of other coded signals when orthogonal code sequences used

» e.g. using Walsh functions

- » good immunity to noise and interference
- » used in military systems for this reason

- recovered signal power greater than noise and other coded signal power

- Wavelength Division Multiplexing (WDM and DWDM):
 - the equivalent of frequency division multiplexing in the optical domain
 - to make use of the enormous bandwidths available there

– a 100 nm wide band of wavelengths from 1250nm to 1350nm:

» frequency at 1250nm = c / 1250nm = $3x10^8$ / $1.25x10^{-6}$ = $2.4x10^{14}$

» frequency at 1350nm = c / 1350nm = $3x10^8$ / $1.35x10^{-6}$ = $2.22x10^{14}$

» bandwidth = $2.4 \times 10^{14} - 2.22 \times 10^{14} = 0.18 \times 10^{14} = 18$ TeraHz

- Light Emitting Diodes (LEDs)

» cheap with speeds only up to 1Gbps

- » wide spectrum best suited to multimode fibre
- Semiconductor lasers
 - » emit nearly monochromatic light, well suited for WDM
 - » use multiple semiconductor lasers set at precisely selected wavelengths
 - tunable lasers possible but only within a small range 100-200 GHz
 - » light launched into the fibre through a lens

- techniques for multiplexing and demultiplexing
- Prism Refraction:
 - » each wavelength component refracted differently

- Waveguide Grating Diffraction:
 - » each wavelength *diffracted* a different amount

- Arrayed Waveguide Grating:
 - » or optical waveguide router
 - » fixed difference in path length between adjacent channels
 - » good for large channel counts

- Multilayer Interference Filters:
 - » a sandwich of thin films
 - » each filter transmits just one wavelength

- last two gaining prominence commercially

• Optical amplifiers

 attenuation limits length of propagation before amplification and regeneration needed

- originally, optical signals had to be converted back to electrical signals and then converted back to optical domain again

- Erbium-Doped Fibre Amplifier (EDFA)

» invented at Southampton University

» injected light stimulates the erbium atoms to release their stored energy

- » noise also added to the signal
- » but still capable of gains of 30 db or more
 - amplification every 120km; regeneration every 1000km
- » a vital technology for inter-continental and trans-continental links