Applications and Layered Architectures

« Communications networks already support a very wide range of services
— email, file transfer, information retrieval
— funds transfer, transaction processing, database updates

— broadcast services — live events, webcams

o flexibility of network architectures necessary
— to take account of new technology, new applications and services etc.
—a common feature is grouping functions into related sets called layers

— design process simplified once functions of layers and their interactions
clearly defined

— a monolithic network structure:
» all functions required at a given point in time implemented as a whole
» would quickly become inflexible and obsolete

» would be very expensive to maintain and modify

« Layering examples :
— both use client/server relationships:

» a server waits for incoming requests by listening to a port
- server software known as a daemon

» client processes make requests as required
» servers provide responses to those requests
 Example: Web browsing and the HyperText Transfer Protocol (HTTP)

— HTTP specifies rules by which client and server interact to retrieve a document
» see for details

— rules of request and response syntax defined

— assumes client and server can exchange messages directly, peer-to-peer

Request ——

HTTP server

v

HTTP client
“— Response

— the client must set up a two-way connection prior to the HTTP request

Event

Message content

User selects document e.qg.
http://www.informatics.ed.ac.uk/teaching/modules/cn.htmi

Network software of client locates the
server host
and establishes a two-way connection

HTTP client sends message requesting
document

GET/teaching/modules/cn.html

HTTP daemon listening on port 80
interprets message

HTTP daemon sends a result code and
a description of the information that the
client will receive

HTTP/1.1 200 OK
Server: Apache/1.3.19
Content-Length: 5562
Content-Type: text/htm|

HTTP daemon reads the file and sends
the requested file through the TCP port

<html>
<head>
<title> etc.

HTTP daemon disconnects the
connection

Text is displayed by the client browser
which interprets the HTML format

— step 2 involves:

» determining the IP address corresponding to the URL in the HTML file by
making a DNS query

» setting up a TCP connection with the WWW server on port 80, using an
ephemeral port at the client end, used only for the duration of this connection

— step 3 uses HTTP to request the document
» specifying the GET method, the document and the protocol version in use

—in step 5, the daemon sends a status line
» and description of the information it will send
» result code 200 indicates client request was successful
» length of document and type
» if request not successful, a failure message sent instead e.g. type 404

—in step 6, html file sent over TCP connection

— browser interprets html and display the document
» may initiate additional TCP connections for images etc.
» and GET interactions

— client and server are not directly connected

— TCP provides the communication service to allow client and server to
communicate

—each HTTP process inserts message into a buffer and calls a TCP transmit
function

— TCP process then transmits buffer contents to other TCP process
» in blocks known as segments

» each segment contains port information in addition to HTTP message
iInformation

— HTTP uses the service provided by TCP in an underlying layer

— transfer of information between HTTP client and server is virtual
» occurs indirectly via TCP

— TCP itself uses and underlying layer i.e. the service provided by IP

— simplification by use of layering

HTTP
server

" v Port80

1

HTTP
client
A
Ephemeral
Port No. v
e
TCP

GET| 80,#

1T

#,80 |STATUS

« Example: DNS Query

— message sent to DNS server to translate domain name to IP address
» [P of local DNS server on Informatics network: 129.215.58.253

— DNS is a distributed database that resides on multiple machines on Internet
» each machine maintains its own database and can be queried by other systems
» see for more details

— this protocol uses the User Datagram Protocol (UDP) instead of TCP

» UDP client attaches a header to the user information to provide port information
- port 53 for DNS

» and encapsulates resulting block in an IP packet
» see for more details

— another peer-to-peer interaction using underlying layers

— consider simple case where resolution takes place in first server
» SQUERY : standard query
» QNAME : name to be translated
» QTYPE : A : translation to IP address

Event

Message content

Application requests name to
address translation

Resolver composes query
message

Header: OPCODE=SQUERY
Question:
QNAME=www.informatics.ed.ac.uk,
QCLASS=IN, QTYPE=A

Resolver sends UDP datagram
encapsulating the query
message

DNS server looks up address
and prepares response

Header: OPCODE=SQUERY, RESPONSE,
AA

Question:
QNAME=www.informatics.ed.ac.uk,
QCLASS=IN, QTYPE=A

Answer: 86400 IN
A 129.215..216.225

DNS sends UDP datagram
encapsulating the response
message

 The OSI Reference Model (from ISO)
— Open Systems Interconnection model
— provides a framework for discussion of the overall communications process

— layered communications protocols can be related to the OSI model
» but none follow the model exactly

— OSI partitions the process of communications into functions carried out in
various layers

—in each layer, a peer process converses with another on a different machine

n-PDUs

entity entity

— processes at layer n are referred to as layer n entities

— layer n entities communicate by exchanging protocol data units (PDUSs)

— each PDU contains a header containing protocol control information and user
Information in a service data unit (SDU)

— behaviour of each layer n governed by its own conventions, a layer n protocol

— for communication to take place, layer n+1 entities make use of layer n services

» through a software port known as a service access point (SAP)

P . nfl
entity G- m entity
A
n-SDU n-SDU “
n-SAP I v 1 ¥ n-SAP
Y el el
v n-SDU | H T'
n entity < g n entity
H| n-SDU

n-PDU

10

— information passed by layer n+1 to SAP is control information plus a PDU

— the layer n+1 PDU is the layer n SDU
» to which a layer n header is added for transfer at layer n

» Or the header is stripped off to supply the layer n SDU to the n+1 layer

— In principle, the layer n protocol does not interpret or make use of information
in the layer n+1 PDU

— the layer n SDU is encapsulated in the layer n PDU
— the user of a service provided by layer n is only interested in its correct

execution
» details of how this is achieved are irrelevant

* Connection-oriented and connectionless services:

— for a connection-oriented service:
» a connection established between two layer n SAPs
- may involve negotiating parameters, initialising sequence numbers etc.
» N-SDUs transferred using the layer n protocol
» the connection broken and resources released

11

— a connectionless service does not require a connection setup

» the control information passed from layer n+1 to layer n SAP must contain all
the address information needed to transfer the SDU

— the HTTP example used the connection-oriented TCP service
— the DNS example used the connectionless UDP service

» Confirmed and Unconfirmed services:
— depending on whether the sender must be informed of the outcome
» usually a connection-oriented service
« Segmentation / Reassembly and Blocking / Unblocking services:
— information transfers can be large or small, or continuous streams

— many transmission systems have a bound on the individual block size
» e.g. ethernet has a 1500 byte limit

—a large layer n SDU can be segmented into multiple n-PDUs
» and reassembled at the receiving end

— small n-SDUs can be blocked into large units and unblocked at the other end
» to make efficient use of layer n services

12

Segmentation

n-SDU

—] >

n-PDU | | n-PDU | | n-PDU
Blocking
n-SDU || n-SDU || n-SDU

Reassembly
n-SDU
n-PDU n-PDU n-PDU
Unblocking
n-SDU n-SDU n-SDU

N

n-PDU

/

N

n-PDU

13

Appliciation A «

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

* The OSI Seven-Layer Reference Model:

» Application B

!

e » | Application
Layer
Presentation
D R R R R R Y YRR RN | 2 Layer
Session
D R R R R R R R R P R T T T T PR PP P PR PR PR »
Layer
eeeseensasusessansatsnensaseensssusssanssasnensasesesansetssensasnensasnsnns > Transport
Communication Network \ Layer
Network | | Network] Network
"""" Layer Layer Layer
......... Data Link wy] Datalink Data Link
Layer Layer Layer
,,,,,, | Physical e Physical Physical
Layer Layer Layer
| I I |

Electrical and/or Optical Signals

14

« Application layer
— provides services frequently needed by applications
—e.g. the HTTP application, FTP, Telnet, email etc.

* Presentation layer
— provides application with independence from differences in data representation

— in principle, this should convert machine-dependent information at one end to a
machine-independent form for transmission

» and convert it, at the other end, to the form needed there
— e.g. big-endian versus little-endian representation of bytes in a word
— e.g. different character codes: ASCII versus Unicode
—e.g. LSB first versus MSB first

« Session layer

— enhances a reliable transfer service by providing dialogue control and
synchronisation facilities

—e.g. NFS, Appletalk

15

» Transport layer
— responsible for the end-to-end transfer of messages between session entities
— PDUs are called segments

— can provide a variety of services:

» a connection-oriented service could provide error-free message transport
- including error detection and recovery, sequence and flow control

» an unconfirmed connectionless service to transport individual messages
- including address information for the session layer

— segmentation / reassembly, and blocking / unblocking for the network layer
— typically accessed through socket interfaces

— can also be responsible for setting up and releasing network connections
» could multiplex multiple transport layer connections into one network connection
» could split a transport layer connection over several network layer connections

» Top four layers involve peer-to-peer processes across the network;
lower three layers involve peer-to-peer processes across individual hops

16

* Network layer
— transfer of data in packets across the network

— routing
» requires cooperation between network nodes

» different schemes and protocols used in networks and in internetworks
- between network packet switches and between internetwork gateways

— also congestion control
—e.g.IP
» Data Link layer
— transfer of frames directly between two nodes
— adds framing information to delineate frame boundaries
— inserts control and address information in a header
— check bits in trailer to enable recovery from transmission errors
— designed to include LAN functions
—e.g. HDLC, PPP, FDDI, ATM

17

* Physical layer
— transfer of bits over a physical channel e.g. wire, fibre etc.
— bit representations, voltage levels, signal durations

— mechanical aspects : plugs and sockets

« Each layer adds a header and possibly a trailer to the SDU is accepts
from the layer above

» 1SO objective also to specify the protocols used in the various layers
— overtaken by events when TCP/IP developed by Berkeley as part of UNIX

18

Appliciation A

Application
Layer

Presentation

Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Application B

|

Application
Layer

Presentation

Layer

Session
Layer

Transport
Layer

Network
Layer

Physical
Layer

Data Link
Layer

data —
data ah| ——
data ph| —
data shj —
data th| —
data nh| —
dt data dh
bits

Physical
Layer

19

Overview of TCP/IP Architecture

« Communication across multiple diverse networks
— evolved from Arpanet and other packet networks in 1983

— military funded research led to a premium on robustness
» resilience to network failure

— result is highly effective and the basis of the Internet

« Two services offered by transport layer

— Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
» TCP offers a reliable connection-oriented transfer of a byte stream

— error recovery, sequence order etc.
» UDP offers best-effort connectionless transfer of individual messages

— no error recovery or flow control

20

* Network architecture consists of four layers

Application
Layer

Application

Transport
Layer

Layer
Transport
Layer

Internet
Layer

Internet
Layer

Network
Interface

Network
Interface

— application layer covers top three OSI layers

»e.g. HTTP, FTP etc.

» has the option of bypassing intermediate layers

* Internet layer

— corresponds to OSI network layer

— handles transfers across multiple networks through use of routers and gateways

— provides a best-effort connectionless packet transfer service

21

Application Application
Transport Router/Gateway Transport
Internet Internet Internet
Network Interface Network Interface Network Interface

— packets are exchanged between routers without connection setup

» routed independently

» may traverse different paths from source to destination

» also called datagrams

— connectionless transfer provides robustness
» packets routed around points of network failure

— gateways may discard packets when congestion occurs

» responsibility for recovery passed up to the transport layer

22

Network Interface layer
— corresponds to OSI Data Link and Physical layers

— concerned with protocols that access intermediate networks

» each IP packet is encapsulated into an appropriate packet for whatever
Intermediate network requires

» interfaces available for various specific network types
- X25, ethernet, token ring, ATM etc.

» packet recovered at exit point from intermediate network

— clear separation of internet layer from technology-dependent network
interface layer

» intermediate network technology transparent to TCP/IP user

23

« Some protocols of the TCP/IP suite:

HTTP SMTP DNS RTP

TCP UDP

Network Network Network
Interface Interface Interface

— all protocols access the network through IP

— provides independence from underlying network technologies
» multiple technologies can happily coexist in a network

— IP complemented by other protocols
» Internet Control Message Protocol (ICMP)

» Address Resolution Protocol (ARP), Reverse Address Resolution (RARP)
etc.

- e.g. ethernet MAC address to IP address and back 24

« Example: (1,1)\ﬁ 2.1)

L
I FOULET berrerssmresmmssnnssnesssnssssessnnsssnessnnssns (2,2)
S
(1.3) | PPP
Ethernet W
(1,2)

— a server plus a local workstation and a remote PC connected via a router

— each host has at least one globally unique IP address

» a network ID and a host ID

- network ID obtained from authorised organisations such as NOMINET, the UK
domain name registry

- they also handle disputes over domain name ownership
» simplified form: (network, host)

— network interface cards (NICs) have physical addresses

» every ethernet card has unique medium access control (MAC) address

- 48 bits structured to include a manufacturer code
25

— more than one IP address if attached to two or more networks

» the IP relates to the interface

» a router has several interfaces and IP addresses

— example has two networks:

Server

HTTP
TCP Router
IP IP
Net Interface Net Interface

\
@y

HTTP

TCP

IP

Net Interface

/

— the IP handler process in each host maintains a routing table

» a routing address kept for every IP address it knows about

» e.g. a physical ethernet MAC address

» knows where to send packets for any IP address

» Or to a router by default

PC

— e.g. workstation wants to send an IP datagram to the server
» |[P datagram contains destination and source IP address in the packet header
» |IP handler looks up destination IP address in its routing tables
» finds server is directly connected via ethernet and knows the MAC address
» |P datagram passed to Ethernet device driver
» Ethernet driver prepares an ethernet frame:

IP
Heade

N— __

Header contains "

source and destination ﬂ

physical addresses;

network protocol type | Ethernet Check
Header Seguence

- protocol type field because ethernet may be passing non-IP packets also
» Ethernet frame broadcast over the ethernet
» server’s interface card recognises the destination MAC address as its own
» server captures the frame
» sees the IP type flag and passes the packet to the IP handler

27

— e.g. server wants to send a datagram to the remote PC
» assume server knows IP address of PC
» assume PC’s complete IP address not found in server’s routing tables
» checks whether routing table contains network address part of PC’s IP address

» If not, searches its routing table for a default router to be used when no other
entries are found

» assume it finds (1,3) as the router’s address
» the IP datagram is passed to the ethernet driver which prepares a frame

» frame contains destination and source physical addresses but IP datagram in the
frame contains the destination IP address of the PC

» the frame is broadcast over the ethernet

» router picks up the frame and passes the datagram to its IP handler

» |IP handler in router sees that datagram not for itself but needs to be routed on
» assume router finds PC at (2,2) is directly connected via a PPP link

» router encapsulates datagram in a PPP frame and sends it via its PPP handler
- no address information since this link is Point-to Point

» PPP handler at PC receives frame, checks protocol type and passes it to its IP

handler
28

— e.g. consider a browser application
» suppose PC user has clicked on a Web link to a document held on the server

» assume that a TCP connection has already been established between the PC
and the server

» the HTTP request message GET is passed to the TCP layer

» TCP handler encapsulates it into a TCP segment
- containing an ephemeral port number and port 80 for the web server
» TCP segment passed to IP layer which encapsulates it into an IP packet

- IP packet contains destination IP address (1,1) and source (2,2)
- header contains protocol type field indicating TCP

» I[P packet encapsulated into a PPP frame and sent to router
» router forwards datagram to server over ethernet

» server captures ethernet frame, extracts the IP frame and passes it to its IP
handler

» IP handler sees TCP flag, extracts TCP segment and passes it to its TCP
handler

» TCP handler sees port 80 and passes message to HTTP handler

Header contains source and
destination port numbers

Header contains source and
destination IP addresses;
transport protocol type

Header contains source
and destination physical
addresses; network
protocol type

HTTP Request

|

TCP
Header

IP
Header

Ethernet
Header

Frame
Check
Sequence

30

— all users use server’s port 80
» how does server know which connection message comes from?

» the source port number, source IP address, and protocol type together define
the socket address of the sender

» similarly the socket address of the destination server

» both together define a connection between user HTTP handler and server
HTTP handler

—in Unix/Linux, using the Berkeley Socket API
» server creates a socket on which to listen for requests
» when the TCP connection has been accepted, a new unique socket ID is used

31

socket

socket Application 1 Application2) .

interface Interface
\| user user | /

¢ kernel kernel ¢
Socket Socket
Underlying Underlying
communication communication
Protocols Protocols

Communications
network

32

* The Berkeley Socket API
— a socket is a communication end-point

— once a TCP-socket connection between two processes is made, end-points
made to act like ordinary files, using read() and write() system calls

— creating a socket :
» sd = socket (family, type, protocol);
— binding to a local address :
» bind (sd, IP address, addrlen); /[address includes port number
— connection by client process :
» connect (sd, IP address, addrlen); /] servers IP address
— server listens for client connection requests :
» listen (sd, queuelen); /[number of requests that can be queued
— and accepts the request :
» newsd = accept (sd, IP address, addrlen);
— accept() normally blocks if no client process waiting to establish a connection
» can be made non-blocking for server to enquire whether any clients waiting

33

Server

socket()
v
bindQ
v
listen()
v Client
acceplt() socket()
blocks until server recei_/es o
a connect requeﬁf_ro_rr] (_:ll_er_]t_ o (_:o_npp:cf r_1e_gc_)t|_aflc_)n_ e connect()
data __ ____ =
read() €«-------—-—-—""°"°"°7°7°7 erte()
v ,
ite() |F----____ data
erte() ____________ o read()
v
close() close()

34

// Server-side socket demo progam

#include <fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <errno.h>

void close socket(int sd) {
int cs;
IT ((cs = close(sd)) < 0) {
printf(“close socket failed: %s\n”, strerror(errno));
exit(l);
+
by

#define SERVER (129<<24 | 215<<16 | 58<<8 | 7)
#define MESSAGELEN 1024
#define SERVER PORT 5000

void main() {

Int ssd, csd;

struct sockaddr_in server, client;
int sockaddrlen, clientlen, ca;
char message[MESSAGELEN];

Int messagelen;

sockaddrlen = sizeof(struct sockaddr in);

// create socket

iIT ((ssd = socket (AF_NET, SOCK_STREAM, 0)) < 0) {
printf(“socket create failed: %s\n”, strerror(errno));
exit(1l):

} else printf(server socket created, ssd = %d\n”, ssd);

// bind socket to me

server.sin_family = AF_INET;

server.sin_port = htons(SERVER _PORT); // big/little-endian conversion

server.sin_addr.s_addr = htonl (SERVER);

bzero(&server.sin_zero, 8);

iIT (bind(ssd, (struct sockaddr *) &server, sockaddrlen) < 0) {
printf(“server bind failed: %s\n”, strerror(errno));
exit(1l):

by

// listen on my socket for clients

1T (listen(ssd, 1) < 0) {
printf(“listen failed: %s\n”, strerror(errno));
close_socket(ssd);
exit(1l);

+

// make socket non-blocking
fcntl(ssd, F SETFL, fcntl(ssd, F _GETFL) | O _NDELAY);

36

// accept a client (non-blocking)
clientlen = sockaddrlen;
while ((csd = accept(ssd, &client, &clientlen)) < 0) {
1T (errno == EAGAIN) {
printf(““no client yet\n”);
sleep(1); // wait a sec
} else {
printf(““accept failed: %s\n”, strerror(errno));
close_socker(ssd);
exit(l);
+

ca = ntohl(client.sin_addr.s_addr);
printf(“client accepted, csd = %d, IP = %d.%d.%d.%d\n”",
csd, (ca>>24)&255, (ca>>16)&255, (ca>>8)&255, ca&255);

// send message to client
sprintf(message, “Server calling client : hil\n”);
messagelen - strlen(message)+1;
iIT (write(csd, message, messagelen) !'= messagelen) {
printf(write failed\n”);
close _socket(ssd);
exit(l);
} else printf(“message sent to client\n”);

// receive message from client
iIT (read(csd, message, MESSAGELEN) < 0) {
1T (errno == EAGAIN) {

37

printf(“no client message yet\n”);
sleep(l);
} else {
printf(“read failed: %s\n”, strerror(errno));
close _socket(ssd);
exit(l);
+

printf(““client message was:\n%s’, message);

close_socket(ssd);

38

// Client-side socket demo program
#include <fcntl.h>
#include <li1nux/socket.h>
#include <linux/Zin.h>
#include <errno.h>

void close socket(int sd) {
InNt Cs;
IT ((cs = close(sd)) <0) {
printf(““close socket failed: %s\n”, strerror(errno));
exit(l);
}
}

#define SERVER (129<<24 | 215<<16 | 58<<8 | 7)
#define MESSAGELEN 1024
#define SERVER PORT 5000

void main() {

int ssd, csd;

struct sockaddr_in server, client;
int sockaddrlen, clientlen, ca;
char message[MESSAGELEN];

Int messagelen;

sockaddrlen = sizeof(struct sockaddr_in);

39

// server address
server.sin_fTamily = AF_INET;
server.sin_port = htons(SERVER _PORT);

server.sin_addr.s_addr = htonl(SERVER);

for (;;) {

//create socket
IT ((csd = socket(AF _INET, SOCK_STREAM, 0)) < 0) {

printfF(““client socket create failed: %s\n”, strerror(errno));

exit(1l);
} else prinf(“client socket create, csd = %d\n”’, csd);

// try to connect to server
iIT (connect(csd, (struct sockaddr *) &server, sockaddrlen) < 0) {

printf(““connect failed: %s\n”, strerror(errno));
// need to destroy socket before trying to connect again
close_socket(csd);
sleep(1);
} else break;

}

printf(“connected to server\n”);

// make socket non-blocking
fcntl(csd, F_SETFL, fcentl(csd, F_GETFL) | O_NDELAY);

40

// receive a message from server
while (read(csd, message, MESSAGELEN) < 0) {
iIT (errno == EAGAIN) {
printf(““no server message yet\n”);
sleep(1);
} else {
printf(“read failed: %s\n”, strerror(errno));
close _socket(csd);
exit(l);
+
by

printf(“server message was:\n%s”’, message);

// send a message to server
sprintf(message, “Client calling server - ho!\n”);
messagelen = strlen(message)+1;
iIT (write(csd, message, messagelen) != messagelen) {
printf(“write failed\n”);
close _socket(csd);
exit(l);
} else printf(“message sent to server\n’);

close_socket(csd);

41

	Applications and Layered Architectures

